Gap-phase regeneration inlongleaf pine wiregrass ecosystems

  • Author(s): Brockway, D.G.; Outcalt, K.W.
  • Date: 1998
  • Station ID: Miscellaneous Publication-SRS-

Abstract

Naturally regenerated seedlings of longleaf pine are typically observed to cluster in the center of tree fall canopy gaps and be encircled by a wide zone from which they are generally excluded. Twelve representative canopy gaps distributed across 600 ha of a naturally regenerated uneven-agedlongleaf pine forest in the sandhills of north central Florida were examined to determine which aboveground and belowground factors are responsible for development of this seedling exclusionary zone. Within 12 m of adult trees growing along the gap edge, significantly fewer longleaf pine seedlings were present. The canopy of overstory trees, however, extended only 4-5 m into the gap. The relatively open structure of the longleaf pine canopy (57% cover) allowed photosynthetically active radiation (PAR) to be evenly distributed upon the forest floor across each canopy gap. Thus, light avail-ability was not related to pine seedling clustering near gap centers. Significantly greater forest litter mass beneath adult trees (5 Mg ha-1) could result in fires more intense than would be supported by the litter mass near gap centers (2.5 Mg ha-1). However, litter mass was significantly elevated only within 4 m of the gap edge. The fine root biomass within 12 m of the gap edge (3-4.5 Mg ha-1) was two to six times that measured near the gap center and most closely coincided with the width of the seedling exclusionary zone along the margin of each gap. Thus, while the canopy of adjacent adult trees may indirectly influence seedling mortality through deposition of needle litter and greater fire intensity within 4 m of the gap edge, the root systems of these adults also appear to directly compete with seedlings within 12-2016 m of the gap edge for limited site resources. To effectively regenerate and sustain longleaf pine wiregrass ecosystems, caution should be used in prescribing single-tree selection harvest methods so as not to create gap openings so small(< 30 m diameter) that intraspecific competition from adult trees totally excludes seedlings. Group selection methods may prove more effective in creating canopy gaps of sizes suitable (>= 40 m diameter) for ensuring that intraspecific competition from adults is maintained at a level which allows for survival and growth of seedlings. Shelterwood and deferment methods may also prove useful where more open canopy conditions are desired. However, the pine seedlings' need for light cannot be used as an appropriate rationale for application of clearcutting methods. (C) 1998 Elsevier Science B.V.

  • Citation: Brockway, D.G.; Outcalt, K.W. 1998. Gap-phase regeneration inlongleaf pine wiregrass ecosystems. Forest ecologyand Management 106(2,3): 125-139.

Requesting Print Publications

Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

Please make any requests at pubrequest@fs.fed.us.

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
  • To view this article, download the latest version of Adobe Acrobat Reader.