Reversing Period-Doubling Bifurcations in Models of Population Interactions Using Constant Stocking or Harvesting

  • Author(s): Selgrade, James F.; Roberds, James H.
  • Date: 1998
  • Station ID: Miscellaneous Publication-SRS-

Abstract

This study considers a general class of two-dimensional, discrete population models where each per capita transition function (fitness) depends on a linear combination of the densities of the interacting populations. The fitness functions are either monotone decreasing functions (pioneer fitnesses) or one-humped functions (climax fitnesses). Conditions are derived which guarantee that an equilibrium loses stability through a period-doubling bifurcation with respect to the pioneer self-crowding parameter. A constant term which represents stocking or harvesting of the pioneer population is introduced into the system. Conditions are determined under which this stocking or harvesting will reverse the bifurcation and restabilize the equilibrium, and comparisons are made with the effects of density dependent stocking or harvesting. Examples illustrate the importance of the concavity of the pioneer fitness in determining whether stocking or harvesting has a stabilizing effect.

  • Citation: Selgrade, James F.; Roberds, James H. 1998. Reversing Period-Doubling Bifurcations in Models of Population Interactions Using Constant Stocking or Harvesting. Canadian Applied Mathematics Quarterly, Vol. 6, No. 3, Fall 1998

Requesting Print Publications

Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

Please make any requests at pubrequest@fs.fed.us.

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
  • To view this article, download the latest version of Adobe Acrobat Reader.