Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability


Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was harvested and the remaining slash and stumps were pulverized and incorporated 30 cm into the soil. One year after harvest soil carbon levels were consistent with preharvest levels but dropped in the third year below pre-harvest levels. Tillage increased soil carbon contents, after three years, as compared with adjacent plots that were not part of the study but where harvested, but not tilled, at the same time. When the soil response to the individual treatments for each genotype was examined, one cottonwood clone (ST66), when irrigated and fertilized, had higher total soil carbon and mineral associated carbon in the upper 30 cm compared with the other tree genotypes. This suggests that root development in ST66 may have been stimulated by the irrigation plus fertilization treatment.

  • Citation: Sanchez, Felipe G.; Coleman, Mark; Garten, Charles T., Jr.; Luxmoore, Robert J.; Stanturf, John A.; Trettin, Carl; Wullschleger, Stan D. 2007. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability. Biomass and Bioenergy 31:793–801

Requesting Print Publications

Publication requests are subject to availability. Fiscal responsibility limits the hardcopies of publications we produce and distribute. Electronic versions of publications may be downloaded, distributed and printed.

Please make any requests at

Publication Notes

  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
  • To view this article, download the latest version of Adobe Acrobat Reader.