Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau

Abstract

The Qinghai-Tibet Plateau constitutes unique mountain ecosystems that can be used for early detection of the impacts of climate change on ecosystem functions. We use the MAPSSCENTURY 2 (MC2), a dynamic global vegetation model, to examine the potential responses of terrestrial ecosystems to climate change in the past (1961–2010) and future (2011–2080) under one medium-low warming scenario (RCP4.5) at a 1-km spatial resolution in the Upper Heihe River Basin (UHRB), northwestern China. Results showed that 21.4% of the watershed area has experienced changes in potential natural vegetation types in the past and that 42.6% of the land would undergo changes by the 2070s, characterized by a sharp increase in alpine tundra at the cost of cold barren land. Net primary productivity (NPP) and heterotrophic respiration (RH) have increased sharply since the mid-1980s and are projected to remain at reduced rates in the future. Overall, UHRB switched from carbon neutral to a carbon sink in 1961–2010, and the sink strength is projected to decline after 2040. Additionally, future climate change is projected to drive a decrease in water yield due to a slight decrease in precipitation and an increase in evapotranspiration (ET). Furthermore, we find large spatial variations in simulated ecosystem dynamics, including an upward trend of NPP, RH, and ET in the alpine zone, but a downward trend in themid-elevation forest zone. These results underscore the complexity of potential impacts of climate change on mountain watersheds that represent the headwaters of inland river systems in an arid environment.

  • Citation: Zhou, Decheng; Hao, Lu; Kim, John B.; Liu, Peilong; Pan, Cen; Liu, Yongqiang; Sun, Ge. 2019. Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau. Climatic Change. 21: 4548-. https://doi.org/10.1007/s10584-019-02524-4.
  • Posted Date: September 17, 2019
  • Modified Date: October 18, 2019
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.